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Thermal decay of a metastable state: Exact solution

M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan, 52900 Israel

~Received 12 September 2002; published 29 January 2003!

Exact solutions are obtained for the thermal decay of a metastable state for two different forms of the
potential and for uniform and localized boundary conditions by using the Laplace transform method. The exact
inverse Laplace transforms are found for a symmetric case, and the results are compared with other calcula-
tions and with the Kramers rate.
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I. INTRODUCTION

Escape from metastable states is an old problem of g
importance both in quantum and classical mechanics.
tunneling of quantum particles through a potential barrier
clearly understood quantum-mechanical problem@1#. We
consider here the dynamics of a classical particle. Suc
particle with energy less than the barrier height is able
cross the barrier only in the presence of fluctuatio
Fluctuation-induced transitions occur in many areas of ph
ics, chemistry, and biology@2#. By definition, these problem
include nonlinear potentials which makes their analysis q
difficult. To overcome this impediment, we consider the si
plest model of a metastable state formed by piecewise c
stant barriers~Fig. 1! that allow an exact analytical solution
Many fundamental properties of a particle moving in a no
linear potential are generic; in particular, they are not v
sensitive to the details of the potential. Therefore, it is wor
while to consider the simplest potential that allows an a
lytical solution, in addition to numerical simulations fo
more complicated potentials.

We have previously considered different phenomena
volving piecewise constant potentials. Exact solutions h
been obtained@3# for the transmission of a classical partic
through one barrier of given width and through two barrie
with a well between them of the same overall width. A
additional periodic force results@4# in the well-known phe-
nomenon of stochastic resonance. The external periodic
@5# as well as the random fluctuations of the barrier hei
@6# are able to increase the population of metastable st
~‘‘stabilization of metastable states’’!. The latter phenom-
enon, along with the previously found@7# stabilized action of
noise on the escape of a particle subject to a periodic forc
large amplitude from a metastable state~‘‘noise enhanced
stability’’ !, shows that there are still some interesting fe
tures in this ‘‘old-fashioned’’ field.

We consider a particle subject to white noise of intens
2D initially located at a metastable state of two types sho
in Figs. 1~a! and 1~b!. For the potential shown in Fig. 1~a!,
the particle has finite probability to remain in the metasta
state ast→`, while for the potential shown in Fig. 1~b!, this
probability vanishes. For simplicity, we consider the sy
metric square-well potential shown in Fig. 1~a!, although the
exact result can be obtained for nonsymmetric case as w
Note that, as one can easily see from Fig. 1, it is sufficien
solve the problem for the potential shown in Fig. 1~a! since
1063-651X/2003/67~1!/011104~6!/$20.00 67 0111
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the appropriate results for the potential shown in Fig. 1~b!
can be obtained by a simple transformations of variables

L→ A1B

2
, a→B2A

2
, x→x2

A1B

2
, U1→`.

~1!

The potentials shown in Fig. 1 belong to the class
simple potentials for which the exact solution to the fu
dynamic problem can be obtained by using the Lapla
transform method or by transferring the Focker-Planck eq
tion into the Schro¨dinger form @8#. We use the former
method which, at the final step, requires the inverse Lapl
transform. The latter can be performed exactly only in ve
special cases, and one such case,B52A, will be considered
below. Although one can perform the full analysis for th
potentials shown in Figs. 1~a! and 1~b!, and we bring here
the final formulas for both cases, we perform the analy
only for the potential shown in Fig. 1~b!, since the appropri-
ate formulas for the other case are quite cumbersome,

The present paper presents the further development of
previous work as applied to the full dynamic analysis o
metastable state. The outline of this paper is as follows
Sec. II, we present the general equations with boundary

FIG. 1. Square-well potentials descriptive of a metastable st
~a! The metastable and the stable states have the potential ba
U0 and U1, respectively. The width of the barrier is 2a, and the
reflecting walls are located atx56L. ~b! The metastable states ar
in the well of widthA with the potential barrier of heightU0. The
trap is located atx5B.
©2003 The American Physical Society04-1
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matching conditions, which are solved afterward for the u
form initial conditions. The slightly more complicated ca
of localized initial conditions is considered in Sec. III. Th
inverse Laplace transform is performed in Sec. IV for t
special case of the potential shown in 1~b! with equal widths
of the well and the barrier. Section V contains some conc
sions.

II. BASIC EQUATIONS

The Fokker-Planck equation for the probability dens
function P(x,t) for the positionx of a diffusing particle at
time t has a following form:

]P

]t
5

]

]x S dU

dx
PD1D

]2P

]x2
[2

]J

]x
, ~2!

whereJ[2Dexp(2U/D)]/]x@exp(U/D)P# is the probability
current.

For the potential shown in Fig. 1,dU/dx50, and Eq.~2!
reduces to the simple diffusion equation withJ5
2D(]P/]x):

]P

]t
5D

]2P

]x2
. ~3!

The boundary conditions are different for potentia
shown in Figs. 1~a! and 1~b!. We assume reflecting bounda
condition at both boundariesx52L andx5L of the poten-
tial shown in Fig. 1~a!, which means that the probabilit
current vanishes at these points,

]P

]x
~x52L,t !5

]P

]x
~x5L,t !50

for the potential shown in Fig. 1~a!, ~4!

while for the potential shown in Fig. 1~b!, we assume the
reflecting boundary condition atx50 and absorbing bound
ary conditions atx5B,

]P

]x
~x50,t !50: P~x5B,t !50

for the potential shown in Fig 1~b!. ~5!

The latter condition means that a particle escapes fro
metastable state through the barrier once it has reached
boundary atx5B.

One has to find the solutionsP1(x,t) andP2(x,t) of Eq.
~3! in each of two regions, (0,A) and (A,B), for the potential
shown in Fig. 1~b!, and P1(x,t), P2(x,t) and P3(x,t) for
three regions, (2L,2a), (2a,a), and (a,L) for the poten-
tial shown in Fig. 1~a!. Continuity of J at the boundaries o
the two adjusted regions means that at the pointsz of the
finite jumps of potentials, one gets@9#

]Pi~z,t !

]x
5

]Pi 11~z,t !

]x
,

01110
i-

-

a
the

Pi~z20,t !expS U~z20!

D D5Pi 11~z10,t !expS U~z10!

D D .

~6!

Initially, a particle is located in a metastable state, be
either uniformly distributed,

P1~x,t50!5
1

c
, ~7!

wherec5a andc5A for the potentials shown in Figs. 1~a!
and 1~b!, respectively, or localized at some pointx0 of a
metastable region

P1~x,t50!5d~x2x0!. ~8!

It is convenient to use the Laplace transform

W~x,s!5E
0

`

P~x,t !exp~2st!dt, ~9!

which, after substitution into Eq.~3!, gives

]2W

]x2
5r 2W2

P~x,t50!

D
, r 2[

s

D
. ~10!

Let us start from the uniformly distributed initial cond
tion ~7!, leaving the slightly more complicate case of th
localized initial conditions~8! for the following section.

For the initial conditionP1(x,t50)51/c, one getsW1
51/cs, and the solution of the inhomogeneous different
equation ~10! in the region (2L,2a) has the following
form:

W1~x,s!5
1

as
1C1exp~rx !1C2exp~2rx !, ~11!

while for the regions (2a,a) and (a,L), where att50,
P25W250 and P35W350, the solutions of Eq.~10! are
given by

W2~x,s!5C3exp~rx !1C4exp~2rx !,

W2~x,s!5C5exp~rx !1C6exp~2rx !. ~12!

The coefficientsCi are determined from the boundary co
ditions ~4!, the initial condition~7!, and the matching condi
tions ~6!, where in Eqs.~4! and ~6!, P is replaced byW.

Omitting the routine algebra, we write down the solutio
of Eq. ~10! subject to boundary conditions~4!, initial condi-
tion ~7!, and the matching conditions~6!,
4-2



expS 2
U0D cosh@r ~L1x!#@A1exp~2ra !2A2exp~22ra !#
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W15
1

as
2

D

as@A1B1exp~2ra !2A2B2exp~22ra !#
for xe~2L,2a!,

W25

expS 2
U0

D D sinh@r ~L2a!#$~A11A2!cosh@r ~x2a!#2~A12A2!sinh@r ~x2a!#%

as@A1B1exp~2ra !2A2B2exp~22ra !#
for xe~2a,a!,

W35

2expS 2
U0

D D sinh@r ~L2a!#cosh@r ~L2x!#

as@A1B1exp~2ra !2A2B2exp~22ra !#
for xe~a,L !, ~13!
tia
where

A65expS 2
U1

D D cosh@r ~L2a!#6sinh@r ~L2a!#,

B65expS 2
U0

D D cosh@r ~L2a!#6sinh@r ~L2a!#.

~14!

Equations similar to Eq.~13! had been obtained earlier@3#
for different boundary conditions and the bistable poten
with U05U1.
e-
a
th

01110
l

The inverse Laplace transform of Eqs.~13! is a challeng-
ing task, but the asymptotic behavior (t→` or s→0) can be
easily found from Eq.~13! which gives,

P1~ t→`!

P3~ t→`!
5

expS 2
U1

D D
expS 2

U0

D D , ~15!

as expected.
According to Eq.~1!, one can easily get from Eq.~13! the

full solution for the potential shown in Fig. 1~b!,
W1~x,s!5
1

as
2

coshFA s

D
~B2A!GcoshSA s

D
xD

asH coshSA s

D
AD coshFA s

D
~B2A!G1F sinhSA s

D
AD GsinhFA s

D
~B2A!GexpS U0

D
D J for x e~0,A!,

W2~x,s!5

sinhSA s

D
AD sinhFA s

D
~B2x!G

asH coshSA s

D
AD coshFA s

D
~B2A!G1F sinhSA s

D
AD GsinhFA s

D
~B2A!GexpS U0

D
D J for x e~A,B!. ~16!
ial
Before the analysis of Eqs.~13! and~16!, we consider in the
following section the localized initial condition~8!, which is
different from the uniform condition~7!.

III. LOCALIZED INITIAL CONDITIONS

Although it is physically obvious that the qualitative r
sults do not depend on the precise initial position of a p
ticle in a metastable state, we consider in addition to
uniform initial condition ~7!, the localized initial condition
r-
e

~8!. For brevity, we bring here the results only for potent
shown in Fig. 1~b!.

We seek the solution of Eq.~10! in region (0,A) as P
5R1S whereR is the solution of Eq.~10! for 2`,x,`
such that att50, R(x,t50)5d(x2x0), andS is the solu-
tion of Eq. ~10! which is equal to zero att50. It is well
known @10# that

R~x,t !5
1

ApDt
expF2

~x2x0!2

4Dt G , ~17!
4-3
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while S(x,s) satisfies Eq.~10! with P(x,t50)50,

S~x,s!5C1exp~rx !1C2exp~2rx !. ~18!

The Laplace transform of Eq.~17! is @11#

R~x,s!5
exp~2r ux2x0u!

2Dr
. ~19!

Therefore, the Laplace transform ofP(x,t) in the region
(0,A) has the following form:
01110
W~x,s!5
exp~2r ux2x0u!

2Dr
1C5sinhrx1C6coshrx,

~20!

while for x e(A,B), W2(x,s) is given, as before, by Eq.~12!.
Analogously to Eqs.~11! and ~12!, the four constants of in-
tegration can be found from the boundary conditions~5!,
initial condition ~8!, and matching conditions~6!. Finally,
one gets for the localized initial condition,P(x,t50)5d(x
2x0), whenx,x0,
of
W1~x,s!5

cosh~rx !cosh~rx0!H coshFA s

D
~B2A!GsinhSA s

D
AD 1sinhFA s

D
~B2A!GcoshSA s

D
AD expS U0

D
D J

AsDH coshSA s

D
AD coshFA s

D
~B2A!G1F sinhSA s

D
AD GsinhFA s

D
~B2A!GexpS U0

D
D J

2
cosh~rx !sinh~rx0!

AsD
for x e~0,A! ~21!

and forx0,x,A, the result is the same withx andx0 interchanged.
Above the barrier,

W2~x,s!5

coshSA s

D
x0D sinhFAS

D
~B2x!G

AsDH coshSA s

D
AD coshFA s

D
~B2A!G1F sinhSA s

D
AD GsinhFA s

D
~B2A!GexpS U0

D
D J for x e~a,b!.

~22!

Equations~21! and ~22! reduce to Eq.~16! if one performs in the former the additional average overx0. Since the inverse
Laplace transform of Eq.~16! and Eqs.~21! and ~22! is not trivial, we consider in the following section the special case
equal widths of the well and the barrier,B52A. For brevity, we omit other exactly soluble cases such asB53A/2 or B
54A/3.

IV. SYMMETRIC POTENTIAL

The inverse Laplace transform of Eq.~16! for uniform initial condition,P(x,t50)51/A, and the symmetric potential,B
52A, has the following form:

W1~x,t !5
1

2p iA
E

C

exp~st!ds

s F 12

coshSA s

D
AD coshSA s

D
xD

cosh2SA s

D
AD 1sinh2SA s

D
AD expS U0

D
D G for x e~0,A!,

W2~x,t !5
P0

2p iA
E

C

exp~st!ds

s

sinhSA s

D
AD sinhFA s

D
~2A2x!G

cosh2SA s

D
AD 1sinh2SA s

D
AD expS U0

D
D

for x e~A,2A!, ~23!

whereC is the usual integration contour of the inverse Laplace transform.
4-4
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The poles of the integrand in Eq.~23! occur ats50 and at

s52
D~a12np!2

A2
, n51,2,3, . . . , ~24!

wherea is the root of the equation

tan~a!5expS 2
U0

2D D . ~25!

One finds the residue at these poles from

s
d

dsFcosh2SA s

D
AD 1sinh2SA s

D
AD expS U0

D D G
s52D(a12np)2/A2

52~a12np!expS U0

2D D . ~26!

Equation~25! has been used in Eq.~26!.
The time variations of the probability distributions from the initial homogeneous distribution in the wall are

P1~x,t !5
1

A11expS U0

D
D (

n52`

`

cosS a12np

A
xD

expF2
D~a12np!2

A2
tG

A~a12np!
for x e~0,A!,

P2~x,t !5

expS 2
U0

2D
D

A11expS U0

D
D (

n52`

`

sinFa12np

A
~2A2x!G

expF2
D~a12np!2

A2
tG

A~a12np!
for x e~A,2A!. ~27!

The survival probabilityS(t) for P(x,t50)51/c, can be found from Eq.~27!,

S1~ t !5E
0

a

P1~x,t !dx5
1

11expS U0

D D (
n52`

` expF2
D~a12np!2

A2
tG

~a12np!2
,

S2~ t !5E
a

2a

P2~x,t !dx5S expS 2
U0

2D
D

A11expS U0

D
D

2
1

11expS U0

D
D D (

n52`

`
expF2

D~a12np!2

A2
tG

~a12np!2
. ~28!
ta
The expression forS1(t) coincides with the result of the
calculation in Ref.@8# performed by a different method.

Another characteristic of the decay of the metastable s
is the mean free passage timet, the time elapsing before
reaching the absorbing boundary atx5B. This time is de-
fined through the survival probabilityS1(t) as t
5*0

`S1(t)dt and can be found from Eq.~28!,
01110
te
t5

A2

DF11expS U0

D D G (
n52`

`
1

~a12np!4

.
A2

16D FexpS U0

D D1
1

3G , ~29!
4-5
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which, for exp(U0 /D).1
3, i.e., according to Eq.~25!, for tana,A3, coincides—to within a numerical factor—with th

well-known Kramers formula@12#. The third derivative of the summation formula@13# cot(a/2)52(n52`
` 1/(a12np) has

been used in Eq.~29!.
Turning now to the case of a localized boundary condition,P(x,t50)5d(x2x0), and symmetric potential,B52A, one

can find, in complete analogy to the preceding calculation,

P1~x,t !5
1

A (
n52`

`

cosS a12np

A
xD cosFa12np

A
x0GexpF2

D~a12np!2

A2
tG for x e~0,A!,

P2~x,t !5
1

A
expS 2

U0

2D D (
n52`

`

sinFa12np

A
~2A2x!GcosFa12np

A
x0GexpF2

D~a12np!2

A2
tG for x e~A,2A!. ~30!
e
m
he
ic

ea
o

-
iv
ta
tw
p
-

s
-
ich
for
se
se

e
ys-
ival
red
of
ill

be-

han
Again, after averaging overx0, Eq. ~30! reduces to Eq.~27!.

V. CONCLUSIONS

Within the past years, nonlinear phenomena have b
extended into different fields of modern science. At the sa
time, it is the nonlinearity that severely complicates t
qualitative analysis leading, as a rule, to the use of numer
simulations. Therefore, the analysis of simple nonlin
models that allow an exact solution is of considerable imp
tance.

The piecewise constant potential~along with the piece-
wise linear potential! is one of such models. In the frame
work of this model, we have performed a comprehens
analysis of the one-dimensional decay of a metastable s
The Focker-Planck equation has been solved exactly for
types of metastable states, characterized by asymptotic
tial @Fig. 1~a!# or full @Fig. 1~b!# decay. The Laplace trans
-

01110
en
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form method has been used in two slightly different form
for uniform and localized initial conditions. The final an
swers have been found in terms of Laplace transforms, wh
allows one to analyze the asymptotic properties, and—
certain symmetric potentials—to perform the inver
Laplace transform explicitly, or to calculate the inver
Laplace transform numerically.

The probability distribution functions found in all thes
cases allow one to describe all statistical properties of s
tems considered. Here, we used them to find the surv
probabilities as well as the escape time that was compa
with the Kramers rate. The next step will be the analysis
the same systems with additional periodic forces that w
allow one to describe the peculiar forms of interactions
tween periodic and random forces in nonlinear systems~sto-
chastic resonance, noise enhanced stability, and others!, im-
plying that order and chaos are complementary rather t
contradictory phenomena@14#.
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