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Thermal decay of a metastable state: Exact solution
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Exact solutions are obtained for the thermal decay of a metastable state for two different forms of the
potential and for uniform and localized boundary conditions by using the Laplace transform method. The exact
inverse Laplace transforms are found for a symmetric case, and the results are compared with other calcula-
tions and with the Kramers rate.
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[. INTRODUCTION the appropriate results for the potential shown in Figh) 1
can be obtained by a simple transformations of variables
Escape from metastable states is an old problem of great

importance both in quantum and classical mechanics. The L_>A+B a_>B_A XX — A+B Uy—ce.
tunneling of quantum particles through a potential barrier is a 2 2 2
clearly understood quantum-mechanical problghl. We (1)

consider here the dynamics of a classical particle. Such a

; . ! ; . The potentials shown in Fig. 1 belong to the class of
particle with energy less than the barrier height is able to.. . . :
. . .~ _simple potentials for which the exact solution to the full
cross the barrier only in the presence of fluctuations

Fluctuation-induced transitions occur in many areas of phys(—jynalmIC problem can be obtained by using the Laplace

ics, chemistry, and biolog§2]. By definition, these problems transform method or by transferring the Focker-Planck equa-

include nonlinear potentials which makes their analysis quitetIon into the Schrdinger form [8]. We use the former

difficult. To overcome this impediment, we consider the sim—mEthOd which, at the final step, requires the inverse Laplace

plest model of a metastable state formed by piecewise Cor']t[ansform. The latter can be performed exactly only in very

stant barriergFig. 1) that allow an exact analytical solution. special cases, and one such case 2A, will be considered

Many fundamental properties of a particle moving in a non_below. Although one can perform the full analysis for the

; . g : ypotentials shown in Figs.(d and Xb), and we bring here
linear potential are generic; in particular, they are not ver the final formulas for both cases, we perform the analysis

sensitive to the details of the potential. Therefore, it is worth- . S ) :
) : X : only for the potential shown in Fig.(b), since the appropri-
while to consider the simplest potential that allows an ana- )
. ; . . . . ; ate formulas for the other case are quite cumbersome,
lytical solution, in addition to numerical simulations for
. ) The present paper presents the further development of our
more complicated potentials.

We have previously considered different phenomena in_previous work as applied to the full dynamic analysis of a

volving piecewise constant potentials. Exact solutions havén:éaﬁ a\l,)vlg S:s;i'n:-?ﬁeou;“ge ?Ethlst_paper 'Itsh atl)so foI(Ijows. In d
been obtained3] for the transmission of a classical particle Y P general equations wi undary an
through one barrier of given width and through two barriers N
with a well between them of the same overall width. An U
additional periodic force resulfgl] in the well-known phe-

nomenon of stochastic resonance. The external periodic field (a)
[5] as well as the random fluctuations of the barrier height U,
[6] are able to increase the population of metastable states y,
(“stabilization of metastable states” The latter phenom- X
enon, along with the previously fourid] stabilized action of L- a 0 a L
noise on the escape of a particle subject to a periodic force of

large amplitude from a metastable stdtaoise enhanced U(x)
stability”), shows that there are still some interesting fea-

tures in this “old-fashioned” field. (b)

We consider a particle subject to white noise of intensity U,
2D initially located at a metastable state of two types shown 3 >
in Figs. Xa) and Xb). For the potential shown in Fig.(d), 0 A B
the particle has finite probability to remain in the metastable

state as—c=, while for the potential shown in Fig (8, this FIG. 1. Square-well potentials descriptive of a metastable state.
probability vanishes. For simplicity, we consider the sym-(g) The metastable and the stable states have the potential barriers
metric square-well potential shown in Figal, although the  y, and U,, respectively. The width of the barrier ia2 and the
exact result can be obtained for nonsymmetric case as weleflecting walls are located at= = L. (b) The metastable states are
Note that, as one can easily see from Fig. 1, it is sufficient tan the well of width A with the potential barrier of heighil,. The
solve the problem for the potential shown in Figa)lsince trap is located ak=B.
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(z+0)

form initial conditions. The slightly more complicated case Pi(z—0t)ex
of localized initial conditions is considered in Sec. Ill. The

inverse Laplace transform is performed in Sec. IV for the

special case of the potential shown ifiblwith equal widths

of the well and the barrier. Section V contains some conclu- nitially, a particle is located in a metastable state, being
either uniformly distributed,

matching conditions, which are solved afterward for the uni- r{ (z—0)

) I+1(z+0'[)exr<

sions.
1
II. BASIC EQUATIONS P,(x,t=0)= = &
The Fokker-Planck equation for the probability density
function P(x,t) for the positionx of a diffusing particle at
time t has a following form: wherec=a andc=A for the potentials shown in Figs(a
and 1b), respectively, or localized at some poix§ of a
JP 9 /duU 9’P EX| metastable region
ﬁz—x(ap)wy:‘&’ @
Pi(X,t=0)=8(Xx—Xgq). (©)]

whereJ= —Dexp(—U/D)d/dx{expU/D)P] is the probability

current. _ o It is convenient to use the Laplace transform
For the potential shown in Fig. 8U/dx=0, and Eq.(2)

reduces to the simple diffusion equation witd=

—D(aP/dx): W(x,s)=f P(x,t)exp —st)dt, 9
0
P 9*P
—=D—:. 3 . Lo .
ot IX2 which, after substitution into Eq3), gives
The boundary conditions are different for potentials 2W P(x t=0
shown in Figs. (&) and 1b). We assume reflecting boundary —=r2W—M, 2= 3_ (10)
condition at both boundaries= — L andx=L of the poten- G D D

tial shown in Fig. 1a), which means that the probability

current vanishes at these points, Let us start from the uniformly distributed initial condi-

tion (7), leaving the slightly more complicate case of the

E(X: —Lt)= ﬁ(xz L,t)=0 localized initial conditiong8) for the following section.
28 For the initial conditionP,(x,t=0)=1/c, one getsW;
for the potential shown in Fig. (&), (4) =1/cs, and the solution of the inhomogeneous differential

equation (10) in the region (-L,—a) has the following
while for the potential shown in Fig.(h), we assume the form;
reflecting boundary condition at=0 and absorbing bound-
ary conditions ak=B,

1
W, (X,8)= —+ C exp(rx)+ Cyexp —rx), (11
IP as
&(x=0,t)=0: P(x=B,t)=0

for the potential shown in Fig(h). (5)  While for the regions {a,a) and (@,L), where att=0,
P,=W,=0 andP;=W;=0, the solutions of Eq(10) are
The latter condition means that a particle escapes from given by
metastable state through the barrier once it has reached the
boundary a=B. W,(X,S) = Caexp(rx) + Cexp( —rx),
One has to find the solutior®;(x,t) andP,(x,t) of Eq.
(3) in each of two regions, (8) and (A,B), for the potential
shown in Fig. 1b), and P,(x,t), P,(x,t) and P5(x,t) for Wa(x,8) = Csexp(rx) + Ceexp( —rx). (12)
three regions, { L,—a), (—a,a), and @,L) for the poten-
tial shown in Fig. 1a). Continuity of J at the boundaries of The coefficientsC; are determined from the boundary con-
the two adjusted regions means that at the pamts the  ditions (4), the initial condition(7), and the matching condi-

finite jumps of potentials, one gef9] tions (6), where in Eqs(4) and (6), P is replaced byw.
Omitting the routine algebra, we write down the solutions
dPi(z,t) _ dPi1(z,1) of Eq. (10) subject to boundary conditior{), initial condi-
ax X ' tion (7), and the matching conditior(§),
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1 exp( - %) coshr(L+x)][A exp2ra)—A_exp—2ra)]

Wisas™ as A, B.exp2ra)—A_B_exp —2ra)]

for xe(—L,—a),

ex;{ - %) sinfr(L—a)]{(A;+A_)coshr(x—a)]—(A,—A_)sinbr(x—a)l}

W= agA.B.exp2ra)—A_B_exp —2ra)] for xe(~a.a),

2exp{ - %) sinfr(L—a)]coshr(L—x)]
- agA.,B.exp2ra)—A_B_exp(—2ra)]

W for xe(a,L), (13

where The inverse Laplace transform of Eq$3) is a challeng-
ing task, but the asymptotic behavidr¢ or s—0) can be
easily found from Eq(13) which gives,

exp ——
U Py(t—x) D
Btzexp<—30)cosr[r(L—a)]tsinr[r(L—a)]. P;(t—wc): Xp(_ﬁ)’ (15

(14) D

A+=ex;< — %) costir(L—a)]xsinfr(L—a)],

Equations similar to Eq13) had been obtained earlig8]  as expected.
for different boundary conditions and the bistable potential According to Eq.(1), one can easily get from E(L3) the
with Ug=Uj. full solution for the potential shown in Fig.(),

ol N

SW{ \/g(s—x)
s oA o] Ao 2]

|
Before the analysis of Eq§13) and(16), we consider in the (8). For brevity, we bring here the results only for potential
following section the localized initial conditio8), whichis ~ shown in Fig. 1b).
different from the uniform conditior7). We seek the solution of Eq10) in region (0OA) as P
=R+ S whereR is the solution of Eq(10) for —eo<x<ow
such that at=0, R(x,t=0)=6(x—Xg), andSis the solu-
I1l. LOCALIZED INITIAL CONDITIONS tion of Eq. (10) which is equal to zero at=0. It is well

known[10] that
Although it is physically obvious that the qualitative re-

sults do not depend on the precise initial position of a par- 1 2
ticle in a metastable state, we consider in addition to the R(x,t)= —exp{— (X~Xo)
uniform initial condition(7), the localized initial condition J7Dt 4Dt

|
s

1 cos E(B_A)
Wl(X,S)—a—S— S S

as) cos EA cos B(B—A)

Vs

sin —A

D

e

cos E(B_A)

for x €(0,A),
+

g

Wz(X,S) =

for xe(A,B). (16)
+

NN

: 17
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while S(x,s) satisfies Eq(10) with P(x,t=0)=0, exp(—r|{x—Xe|)
W(X,s) = —————+ Cgsinhrx + Cgzcoshrx,
S(x,s)=C,exprx)+Cyexp( —rx). (18 2Dr
(20)
The Laplace transform of Eq17) is [11] ) o
while for x €(A,B), W5(x,s) is given, as before, by E412).
exp(—r|{x—Xo|) Analogously to Eqs(11) and(12), the four constants of in-

R(x,s)= (19

2Dr tegration can be found from the boundary conditidbs

initial condition (8), and matching conditiong6). Finally,
Therefore, the Laplace transform &f(x,t) in the region one gets for the localized initial conditioR,(x,t=0)= &§(x
(0,A) has the following form: —Xp), Whenx<xg,
il
expl —
D

coshrx)coshrxo)[ cos?{ \/E(B—A) +sin>—{ \/E(B—A)
D D
5]
exp —
D

(s IV:
sin —A cos —A
D D
S s S S
\/5[ cos}‘( \[BA cosv{ \/;(B—A) smr( \[EA smr{ \/;(B—A)
coshrx)sinh(rxg)

- for x €(0,A) (21

\sD

and forxy<x<<A, the result is the same withandx, interchanged.

Above the barrier,
S
cos)‘( \/éxo sin}-{ \/;(B—x)
W,(X,S)= for x e(a,b).
U
\/SD{ cosr( \/EA cosr{ \/E(B—A) + sinr( \/EA sin}‘{ \E(B—A) exp(—o)]
D D D D D

(22

Equations(21) and (22) reduce to Eq(16) if one performs in the former the additional average axgrSince the inverse
Laplace transform of Eq16) and Eqs.(21) and(22) is not trivial, we consider in the following section the special case of

equal widths of the well and the barrid8=2A. For brevity, we omit other exactly soluble cases suctBas3A/2 or B
=4A/3.

Wl(X,S) =

+

IV. SYMMETRIC POTENTIAL

The inverse Laplace transform of E@.6) for uniform initial condition,P(x,t=0)=1/A, and the symmetric potentiaB

=2A, has the following form:
cos —A | cos —X
1 f exp(st)ds D D
C

= 1— for x e(0,A),
2miA S s s UO
cosi‘?( \ﬁA +sin|~?( \ﬁA exp( —)
D D D

sin —A | sin —(2A—X)

exp(st)ds D D

S s s Uo

cosH’-( \ﬁA +sinr12( \ﬁA exp(—)

D D D

whereC is the usual integration contour of the inverse Laplace transform.

Wi (x,t)

Po
Wa(x,t)= 2 fc

vy for x e(A,2A), (23
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The poles of the integrand in E(R3) occur ats=0 and at
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_ D(at 2nr)? B
=TT n=123..., (24
where« is the root of the equation
A ar) Yo 25
an «) =ex ~5p /- (25
One finds the residue at these poles from
ﬁ(\/gAJr'hZ(\FA) p(Uc’” (a+2nm) p(U) (26)
s—| cos — sin —A|exp = =—(a+2nm)ex
ds D D D s=—D(a+2nm)2/A2 2D
Equation(25) has been used in E¢26).
The time variations of the probability distributions from the initial homogeneous distribution in the wall are
D(a+2nm)?
. exg ———m
1 s a+2nw A?
P.i(x,t)= co X for x e(0,A),
1) TR == A Ala+ 2nm) <(0A)
1+exp( —)
Uo D(a+2n)?
exg — — . exg ————t
2D a+2nmw A?
H(X, 1) = ——— > sin (2A—X) for x e(A,2A). (27)
/ Up) n=—= A(a+2n)
1+exp< —)
D
The survival probabilityS(t) for P(x,t=0)=1/c, can be found from Eq.27)
r{ D(a+2n)2 l
s exp-———F—t
a 1 AZ
s.0= [ Puxtox- ——— 3 ,
0 4U0) n=—c (a+2n7)?
l1+exp —
D
Uo D(a+2n)?
- L exg-—————t
2 A?
sz(t)zf Po(x,t)dx= > : (29
2 / Uo p( ) == (a+2nm)?
1+exg —| 1+ex
D
|
The expression foiS,(t) coincides with the result of the A2 o 1
calculation in Ref[8] performed by a different method. T ¥ 2
Another characteristic of the decay of the metastable state D 1+ex;{—o } n=-= (a+2nm)
is the mean free passage time the time elapsing before D
reaching the absorbing boundaryat B. This time is de- A2 U 1
fined through the survival probabilityS;(t) as 7 _ exp{—o +Z (29)
= [5S.(t)dt and can be found from E@28), 16D D/ 3
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which, for expU,/D)>3, i.e., according to Eq(25), for tanw<+/3, coincides—to within a numerical factor—with the
well-known Kramers formuld12]. The third derivative of the summation formula3] cot(a/2)=23)__ . 1/(a+2nw) has
been used in Eq29).
Turning now to the case of a localized boundary conditi®x,t=0)= §(x—Xg), and symmetric potentiaB=2A, one
can find, in complete analogy to the preceding calculation,
% D(a+2n)2
exg — ————t

1 & a+2nT a+2nT
Pl(x’t):_n;x co A X|cos———Xg 2

for x €(0,A),

1 Uol <  [a+t2nm
Pz(x,t)=xexy{—ﬁ> 2 sw{T(ZA—x) t| for xe(A,2A). (30

n=—o

a+2nmT
Co§ ———Xo

[{ D(a+2nm)?
exp————
A2

Again, after averaging ovety, Eq.(30) reduces to Eq27).  form method has been used in two slightly different forms
for uniform and localized initial conditions. The final an-
V. CONCLUSIONS swers have been found in terms of Laplace transforms, which
allows one to analyze the asymptotic properties, and—for
Within the past years, nonlinear phenomena have beegertain symmetric potentials—to perform the inverse
extended into different fields of modern science. At the saméaplace transform explicitly, or to calculate the inverse
time, it is the nonlinearity that severely complicates theLaplace transform numerically.
gualitative analysis leading, as a rule, to the use of numerical The probability distribution functions found in all these
simulations. Therefore, the analysis of simple nonlinearcases allow one to describe all statistical properties of sys-
models that allow an exact solution is of considerable importems considered. Here, we used them to find the survival
tance. probabilities as well as the escape time that was compared
The piecewise constant potenti@long with the piece- with the Kramers rate. The next step will be the analysis of
wise linear potentialis one of such models. In the frame- the same systems with additional periodic forces that will
work of this model, we have performed a comprehensiveallow one to describe the peculiar forms of interactions be-
analysis of the one-dimensional decay of a metastable stateveen periodic and random forces in nonlinear systésts
The Focker-Planck equation has been solved exactly for twehastic resonance, noise enhanced stability, and 9thers
types of metastable states, characterized by asymptotic pastying that order and chaos are complementary rather than
tial [Fig. 1(@)] or full [Fig. 1(b)] decay. The Laplace trans- contradictory phenomer{d 4.
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